CHEMISTRY MARKING SCHEME Guwahati -2015 SET -56/1/G

Sr.	Value points	Marks
No.		
1	CH_3 $C_6H_5 - CH - Br$	1
2	Dispersed phase: Solid, Dispersion medium: Gas	1/2 + 1/2
3	Zn: [Ar] 3d ¹⁰ 4s ² / Because of Fully filled d-orbitals in ground state as well as in the oxidized state.	1
4.	2,4 – dimethylphenol	1
5.	1 F/ 1 Faraday	1
6.	Dichloridobis(ethane –1,2-diamine)cobalt (III) ion Geometrical Isomerism / cis-trans Isomerism/ optical isomerism	1+1
6.	<u>OR</u> i) [Ni (CO)₄] ii) K₂[Fe(CN)₄]	1+1
7.	i) C ₆ H ₅ NH ₂ < CH ₃ CH ₂ NH ₂ < CH ₃ NHCH ₃ ii) (CH ₃) ₃ N < CH ₃ NHCH ₃ < C H ₃ NH ₂	1+1

8.	$\Delta T_f = T_f^0 - T_f$ The decrease in freezing point of a solvent d solute in it is called depression in freezing point $\Delta T_f = K_f m$		1
	$\Delta T_{f} = K_{f \times x} \frac{W_{2} / M_{2}}{W_{1} / 1000}$ $M_{2} = K_{f} \cdot w_{2} \times 1000$ $W_{1} \cdot \Delta T_{f}$		1
9.	Order Sum of powers to which the concentration terms are raised in rate law expression. May also be zero or in fraction	Molecularity The number of reacting species in an elementary reaction. Cannot be zero or fraction. (or any other correct differences)	1+1
10.		Br F	1+1
11.	i) When both absorption and adsorption to referred to as Sorption. ii) The colloidal dispersion/solution in which for the dispersion medium / solvent iii) Colloids in which small sized dispersed particles of sizes within the colloidal concentration of the solution (above electrolyte at low concentrations but due to micelle formation.	n the dispersed phase has got an affinity loving. hase particles aggregate to form range (micelles) at a definite	1+1+1

12.	a)Impure Zr reacts with I ₂ to form volatile ZrI ₄ which when heated at higher	1+1+1
	temperature decomposes to give pure Zr.	
	b)CO acts as a reducing agent.	
	c) It is a mixture of Cu₂S and FeS.	
13.	 i) Due to intermolecular H-bonding in ammonia . ii) Bond dissociation enthalpy of H—Te bond is lesser than that of H—S bond. iii)Cl₂ + H₂O → HOCl + HCl or Due to the formation of Hydrochloric acid and Hypochlorus acid. 	1+1+1
14.	, , , , , , , , , , , , , , , , , , ,	1/2 + 1/2
	(a) (i) sp ³ d ² , Octahedral (ii) sp ³ , Tetrahedral	1/2 + 1/2
	(b) CO, because of synergic or back bonding.	1/2 , 1/2
15.	(i) CH ₃ –CH ₂ - CH ₂ OH (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃	1+1+1
	(iii) MgBr	
16.	- (i)	1+1+1
	(ii) CH3-CH2-CI + CH3ONa CH3-CH2-O-CH3 (iii) CH3-CH2-O-CH3 CH3-CH2-O-CH3	
	CH₃-CO-CH₃ (ii) H₂Ō CH₃ CH₃	
	(Or any other correct method.)	

		1
17.	 (i) Aniline being a base reacts with AlCl₃(Lewis Acid) to form a salt. (ii) —CH₃ group shows +I – effect(electron releasing group) whereas – NO₂group shows –I- effect(electron withdrawing group) (iii) To reduce activating effect of –NH₂. 	1+1+1
18.		
10.	 (i) Styrene, C₆H₅-CH=CH₂ (ii) Adipic Acid HOOC-CH₂-CH₂-CH₂-CH₂-COOH Hexamethylenediamine H₂N-(CH₂)₆-NH₂ (iii) Ethylene glycol HO-CH₂-CH₂-OH 	1/2 + 1/2
	(iii) Ethylene giycomo-chi2-chi2-om	1/2 + 1/2
	HOOC—COOH Terephthalic acid	1/2 + 1/2
		/2 + /2
	(note: half mark for name/s and half mark for structure/s) OR	
18.	Linear polymers – Monomeric units join to form long polymeric chains.	1/2 + 1/2
	2. Branched chain polymers - Monomeric units join not only to form long polymeric chains but also branches.	1/2 + 1/2
	3. Three dimensional network polymers or cross-linked polymers- Monomeric units join to form long polymeric chains and cross links.	1/2 + 1/2
19.		1+1+1
	HOHAC (CHOH)	
	HOH₂C-(CHOH)4 –C− OH	
	(i)	
	(ii) Intermolecular H-Bonding.	
	(iii) Pernicious Anaemia.	
20		1
20.	$\frac{p_1^0 - p_1}{p_1^0} = \frac{\mathbf{w}_2 \times M_1}{M_2 \times \mathbf{w}_1}$	1
	$\frac{17.5 - P_1}{17.5} = \frac{15/180}{\frac{15}{180} + \frac{150}{18}}$	
	15	1
	$=$ $\frac{15}{1515}$	
	= 0.01	
	$17.5 - P_1 = 0.01X 17.5$	1
	$17.5 - 0.175 = P_1$	
	P ₁ = 17.325 mmHg	

21	(i) Crystalling solids. They have definite and requier geometry which extends	1,1,1
21	 (i) Crystalline solids – They have definite and regular geometry which extends throughout the crystal .i.e , they have long range order . (ii) Frenkel defect – caused by the dislocation of cation in the crystal lattice. 	1+1+1
	(iii) n – type semiconductor – These are obtained due to metal –excess defect or by	
	adding trace amounts of group 15 elements (P, As) to extremely pure silicon or	
	germanium by doping .	
22.	$k = 2.303 \log [A_0]$	
	t [A]	1/2
	k = <u>2.303</u> log <u>100</u>	
	10min 75	
	$k = 2.303 \times 0.125$	1/2
	10min	
	4	1
	$k = 0.02879 \text{ min}^{-1}$	
	$t_{1/2} = 0.693 = 0.693$	
	k 0.02879 min ⁻¹	
	t _{1/2} = 24.07min	1
23.	(i) Concern for students health, Application of knowledge of chemistry to daily life,	1/2, 1/2
	empathy , caring or any other (ii)Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders.	1/2 , 1/2
	Eg: equanil (or any other suitable example)	1
2.4	(iv) Aspartame is unstable at cooking temperature.	
24	(i) +3 oxidation state of Eu is more stable.(ii) Due to d-d transition / unpaired electrons in d orbitals.	1
		1
	(iii) Due to completely filled d-orbitals which leads to weak metallic bond.	1
	(b) (i) $2KMnO_4 \longrightarrow K_2MnO_4 + O_2 + MnO_2$	_
	(11) 2 2 2 4 4 4 5 2 2 4 5 3 4 5 5 3 4 5 5 5	1
	(ii) $Cr_2O_7^{2^-} + 14 H^+ + 6 Fe^{2^+} \rightarrow 2 Cr^{3^+} + 6 Fe^{3^+} + 7 H_2O$	1
	OR	
24	(a) (i)because small size atoms like B, C , H,N occupy interstitial sites in the lattice of	1
	transition elements. (ii) Because Cr ³⁺ has the stable t _{2g} ³ configuration whereas Mn ²⁺ has stable 3d ⁵	1
	configuration(half filled).	
	(iii) Due to involvement of d-electrons in metallic bonding.	1

	(b) Misch metal is an alloy which consist of a lanthanoid metal(95%) and iron (5%) and	1
	traces of S,C,Ca and Al. USE- It is used in Mg-based alloy to produce bullets, shell and lighter – flint.	1
25.	·ОН	½ x 4=2
	(a) A- CH₃COCl B- CH₃CHO C- CH₃-CH - CH₃	
	D- CH ₃ CH ₂ OH b) i)On heating with NaOH/ I ₂ , CH ₃ COCH ₂ CH ₃ gives yellow ppt of CHI ₃ whereas CH ₃ CH ₂ CH ₂ CHO does not.	1
	ii)On adding NaHCO₃ solution, ethanoic acid gives brisk effervescence whereas ethanal does not.	1
	(Or any other distinguishing test)	
	c) CH₃COCH₂CH(CI)CH₃	1
	OR	
25.	(a) (i) CH ₃ -CH ₂ -CH ₃ (ii) CH ₃ -CH ₂ -CH=N-OH	1
	OH (iii) CH3-CH ₂ -CH-CN	1
	(b) HCHO >CH₃CHO >CH₃COCH₃ (c) On heating with NaOH/ I₂, C ₆ H₅COCH₃gives yellow ppt of CHI₃ whereas C ₆ H₅CHO does not.	1
	(or any other distinguishing test)	

26.	$E_{Cell} = (E^{O}c - E^{O}_{A}) - 0.059/2 \text{ V log } [Mg^{2+}] / [Ag^{+}]^{2}$	1
	= $[.80-(-2.37)]-0.059/2 \text{ V log } [10^{-2}/(10^{-4})^2]$	1
	$= 3.17 - 0.0295 \text{ V X log } 10^6$	
	= 3.17-0.0295 V X 6	
	= 3.17-0.1770	
	= 2.9930 V	1
	$\Delta G = -nFE_{Cell}$	1/2
	$= -2 \times 96500 \text{ Cmol}^{-1} \times 2.9930 \text{ V}$	1/2
	= -577649 Jmol ⁻¹	
	= -577.649 kJmol ⁻¹	1
	OR	
26.	$\Lambda_{\rm m}$ =(k/M) x 1000 Scm ² mol ⁻¹	
	= $(4.95 \times 10^{-5}/0.001) \times 1000 \text{ Scm}^2 \text{mol}^{-1}$	1/2
	= 49.5 Scm ² mol ⁻¹	
		1

$\alpha = \Lambda_{M}/\Lambda_{M}^{0}$ $\Lambda_{M}^{0} = \lambda_{CH3COO}^{0} + \lambda_{H+}^{0}$ $= (40.9+349.6) \text{ Scm}^{2} \text{mol}^{-1}$ $= 390.5 \text{ Scm}^{2} \text{mol}^{-1}$	1/2
$\alpha = 49.5/390.5$ = 0.127 or 12.7%	1
b)Which converts energy of combustion of fuels directly into electrical energy. Advantages: high efficiency,pollution free	1